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Lithium: a potential therapeutic strategy in
obsessive–compulsive disorder by targeting
the canonical WNT/β pathway
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Abstract
Obsessive–compulsive disorder (OCD) is a neuropsychiatric disorder characterized b–y recurrent and distinctive
obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress,
inflammation, and the glutamatergic pathway play key roles in the causes of OCD. However, first-line therapies include
cognitive–behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for a new
treatment is mandatory. This review focuses on the potential effects of lithium, as a potential therapeutic strategy, on
OCD and some of the presumed mechanisms by which lithium provides its benefit properties. Lithium medication
downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could
be associated with the control of oxidative stress, inflammation, and glutamatergic pathway. Future prospective
clinical trials could focus on lithium and its different and multiple interactions in OCD.

Introduction
Obsessive–compulsive disorder (OCD) is a neu-

ropsychiatric disorder that affects around 1–2% of the
population in their lifetime1. OCD is characterized by
recurrent and distinctive obsessions and/or compulsions
and causes significant problems for patients and their
families. OCD is one of the most common mental health
disorders in the world2. OCD reduces the quality of life,
increases the recourse of care services, and impairs social
functioning. The presence of mood disorders, depression,
anxiety, impulse control disorders, sleep disturbance,
and personality disorders could be associated with OCD
and exhibit comorbid conditions3. These comorbidities
can be correlated with social difficulties and can have a
major impact on health-related quality of life4. The risk of
suicide is increased in OCD5. Efficacious treatments are

needed to face the debilitating nature of OCD6. The
etiologies of OCD remain unclear, but there are several
functional disorders in many structures such as the brain’s
orbitofrontal cortex, limbic system, basal ganglia and
thalamus, and neurotransmitters7.
Nevertheless, the links between neuro-anatomical and

biochemical models have not yet been well-established
definitively8.
In recent years, oxidative stress and free radicals9,

inflammation10, and the glutamatergic pathway11 have
been shown to play key roles in the causes of OCD.
First-line therapies include cognitive-behavioral ther-

apy12. Augmentation strategies with antipsychotics could
provide some benefits in at least a third of patients in the
case of treatment resistance. Only 40–60% of the patients
respond to first-line therapy and research for new treat-
ment beyond current guidelines is mandatory13.
This review focuses on the potential effects of lithium,

as a potential therapeutic strategy, on OCD and some of
the presumed mechanisms by which lithium provides its
beneficial properties.
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Lithium, which was introduced in 1949, is the main
commonly used drug for the treatment of chronic mental
illnesses, such as bipolar disorder, characterized by
depressive and manic cycles. Lithium remains the first-line
therapy for manic-depressive illness, bipolar disorder14,
traumatic brain injury15, and numerous neurodegenerative
diseases, such as Alzheimer’s, Huntington’s, and Parkin-
son’s diseases16. In the acute treatment of mania, the
efficacy of lithium is well established17. Several studies
have shown that prophylactically lithium can reduce
manic relapses, even if its efficacy is significantly lower in
the reduction of depressive relapses18. Moreover, other
studies have presented that therapy by lithium could
reduce suicides and suicide attempts in patients with
mood disorders19. Lithium therapeutic mechanisms
remain complex, including several pathways and gene
expression, such as neurotransmitters and receptors, cir-
cadian modulation, ion transport, and signal transduction
processes20.
Thus, recent advances seem to show that the benefits of

lithium extend beyond just the treatment of mood. Neu-
roprotection against excitotoxicity or brain damage is
another role of lithium21. However, in contrast, several
reports have presented that a high dose of lithium could
induce irreversible neurotoxicity effects22. Excessive
intake or impaired excretion could result in lithium
accumulation. Lithium is mainly susceptible to accumu-
lation in bone, muscle, liver, thyroid, and kidney23.
Dehydration, febrile illness, or gastrointestinal loss can
lead to elevated lithium levels in serum24. Renal toxicity is
more common in patients on chronic lithium therapy
with nephrogenic diabetes insipidus25. The neurologic
effects are hyperreflexia, nystagmus, or ataxia and remain
mostly reversible24. Other troubles are reversible cardio-
vascular effects (QT prolongation, intraventricular con-
duction defects)26, gastrointestinal effects27, and
endocrine effects28. But, low doses of lithium are corre-
lated with lower side-effects29.

Pathophysiology of OCD
OCD and oxidative stress
The oxidative stress process presents an imbalance

between production and elimination of reactive metabo-
lites and free radicals (ROS and RNS)30. ROS production
is due to cell damages by nitration and oxidation of sev-
eral lipids, proteins, and DNA. The NADPH oxidase
(NOX) enzyme involves ROS by the oxidation of intra-
cellular NDAPH to NADP+ . Intracellular and extra-
cellular environmental conditions are modulated by ROS
production31. Mitochondrial dysfunction associated with
excessive ROS production and a diminution in ATP
production characterize the oxidative stress process32.
Inflammation markers, such as leukocytes, are recruited
from the damage sites and then participate in the

increased uptake of oxygen for the release of ROS and
thus its accumulation. NOX, activated by the inflamma-
tion process, enhances oxidative stress32,33.
The main antioxidants are superoxide dismutase (SOD),

glutathione peroxides, and catalase. SOD is synthesized in
response to oxidative stress and acts as an antioxidant, but
its elevation in intracellular conditions increases cell
damage by a generation of H2O2

34. Glutathione is one of
the first-line defense against oxidative stress. Glutathione
peroxidases are selenoenzymes that catalyze the reduction
in hydroperoxide at the expense of gluthatione34. The
heme-containing enzyme catalase has a major role in the
removal of hydrogen peroxide35. They protect bio-
membranes against oxidative attack, lipid peroxidation
by H2O2, and slows down H2O2-dependent free-radical
attack on lipids36.
Free radicals (ROS and RNS) induce a decrease in

synaptic efficacy37 by affecting excitatory and inhibitory
synaptic potentials38. Free radicals deteriorate membrane
lipids by lipid peroxidation, cause ATP depletion, DNA
damage and neuronal dysregulation39. The brain and
nervous system are especially prone to free-radical-
induced damage, due to their highly oxygenated organ
function40 and low catalase activities41. The brain presents
a large amount of iron and polyunsaturated fatty acids and
a moderate amount of SOD and glutathione peroxides34.
Several studies have shown that free-radical-mediated
neuronal dysregulation plays a key role in the pathophy-
siology of psychiatric diseases by increased SOD activity
levels, such as in schizophrenia42. The comorbidity
observed in OCD raises this possibility of basal ganglia
involvement43. Major depression presents increased
monoamine oxidase activity and elevated antioxidant
levels44. Recent studies have shown that SOD levels were
significantly higher in OCD patients compared to the
control group34. A higher production of reactive oxygen
metabolites, such as the superoxide anion, affects catalase
activity45, and an increase in production of hydroxyl ions
reduces catalase activity46. Numerous studies have shown
a link between OCD and oxidative stress by the involve-
ment of free radicals and antioxidant defense34,44. More-
over, free radicals damage the cell structure and
extracellular matrix compounds by disrupting the genetic
structure, oxidative stress, mitochondrial dysfunction, and
impaired metabolism9.

OCD and inflammation
Numerous evidence has shown an important role played

by the immune system (i.e. inflammation) in the etiology
of psychiatric disorders47. The link between the immune
system and inflammation in OCD pathophysiology is
recent and had emerged in the early nineties11. Indeed,
the pediatric autoimmune neuropsychiatric disorder
associated with group A β-hemolytic streptococcus
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(GABHS) (PANDAS) and thus the recalled pediatric acute
neuropsychiatric syndrome (PANS) have highlighted that
several agents rather than streptococcus could be involved
in these acute-onset forms of OCD48. The hypothesis for
PANS and PANDAS was a link between gangliosides in
basal ganglia neurons and the GABHS and/or other
agent48. Other studies have presented evidence of
inflammatory and immune system increase in pediatric
OCD by higher monocytes and CD16+monocytes
compared to healthy control subjects49.
Nevertheless, the relevance of neuro-inflammation and

autoimmunity in OCD seems not limited to subsets of
pediatric and acute onset forms of OCD but could be of
interest in adults50. The role of inflammation in OCD has
been strengthened by the higher rate of anti-basal ganglia
antibodies (ABGA) in patients with primary OCD versus
control subjects51. Moreover, significantly increased
levels of cytokines and inflammatory agents have been
observed in OCD patients, such as IL-2/4/6/10 and TNF-
α, compared to controls52. In a recent study using posi-
tron emission tomography (PET) imagery, the presence
of inflammation in the cortico-striatal-thalamo-cortical
circuit was shown to induce microglial cell activation
in OCD patients10.

OCD and microglial dysregulation
Microglia are the brain’s resident immune cells. They

are small cells of macrophage lineage originating from
hematopoietic progenitors present in the brain. They can
be identified in brain tissue by their expression of
numerous macrophage markers53. Microglia have been
presumed to be quiescent under physiological conditions
and activated upon immune stimulation. They act in the
regulation of neurogenesis54, neuronal function, and
homeostasis under physiological conditions and in the
absence of inflammation55. The dysregulated activation of
microglia leads to infiltration of the brain by macrophages
under pathological conditions55. A specific role for
microglia in OCD has been suggested in mouse models56.
However, this mechanism remains unclear.

OCD and the glutamatergic pathway
Glutamatergic dysfunction is becoming the principal

focus o pharmacological research in the OCD field. Glu-
tamate is an amino acid responsible for the brain’s pri-
mary excitatory neurotransmission and is considered as
the main neurotransmitter within the cortico-striatal-
thalamic circuit involved in OCD57. Glutamatergic neu-
rons are embedded in every brain circuit in comparison to
dopamine and serotonin, which are used by a small
minority of neural cells in the brain. Numerous evidence
has shown a glutamatergic dysfunction in OCD11,58.
Glutamate is the main excitatory neurotransmitter in

the brain and is present in more than 50% of synapses.

This signaling plays a major role in neuronal plasticity,
memory, and learning59. Rapid neurotoxicity enhanced by
neuronal excitotoxin has been observed with abnormal
glutamate levels60.
In neurons, glutamate is stored in synaptic vesicles from

which it is released. The release of glutamate leads to
increased glutamate concentration in the synaptic cleft to
bind ionotropic glutamate receptors. The main consistent
candidate gene in OCD is the SLC1A1 (solute carrier,
family 1, member 1) gene61. SLC1A1 encodes for the
neuronal excitatory Na+ -dependent amino acid trans-
porter 3 (EAAT3). EAAT1 and EAAT2 are the main
astrocyte glutamate transporters, whereas EAAT3 is the
major neuronal glutamate transporter. Glutamate is
converted into glutamine in astrocytes and thus releases
it. Then, glutamine is taken up by neurons to be re-
converted into glutamate62. The role of the EAAT3 is to
control glutamate spillover, which affects pre-synaptic
N-methyl-D-aspartate (NMDA) and metabotropic gluta-
mate receptors activity63,64. EAAT3 activity is dysregu-
lated by the overexpression of GSK-3β65.
Increased levels of glutamate in adult unmedicated

patients with OCD have been shown in cerebrospinal
fluid (CSF)66,67. Moreover, studies based on magnetic
resonance spectroscopy (MRS) have observed increased
glutamate and related components in brain areas,
including central nodes of the cortico-striatal-thalamo-
cortical circuit in OCD patients11,68. In addition, genetic
studies have also involved a correlation of glutamatergic
genes with OCD69.

Activation of the canonical WNT pathway by lithium: a
potential therapeutic strategy
Lithium and GSK-3β
A recent study has observed that mutant murine

models of OCD presented increased GSK-3β activity and
thus its inhibition could be a treatment of perseverative
behaviors70.
Glycogen synthase kinase-3β (GSK-3β) is a serine/

threonine kinase that is involved in numerous intracel-
lular signaling pathways. Dysfunction of GSK-3β is
involved in the pathogenesis of several diseases, including
neuropsychiatric disorders71. GSK-3β is a regulator of
several pathways such as inflammation, neuronal polarity,
or either cell membrane signaling72. GSK3β is known to
be the major inhibitor of the canonical WNT/β-catenin
pathway73. The nameWNT is derived from Wingless
drosophila melanogaster and its mouse homolog Int. The
WNT pathway is involved in numerous signaling and
regulating pathways, such as embryogenesis, cell pro-
liferation, migration and polarity, apoptosis, and organo-
genesis74. However, during numerous pathological states,
the WNT pathway can be dysregulated, such as in
inflammatory, metabolic and neurological disorders,
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tissue fibrosis, and cancers75. GSK-3β downregulates the
canonical WNT/β-catenin pathway by inhibiting
β-catenin cytosolic stabilization and its translocation in
the nucleus76. Moreover, several studies have shown a link
between neuroinflammation and the augmentation of the
GSK-3β activity and in parallel the decrease of the WNT/
β-catenin pathway and the protein kinase B (Akt) pathway
(Fig. 1)77.
Lithium at concentrations of 1–2mM can inhibit GSK-

3β activity78–80. Lithium reduces GSK-3β activity by
increasing the inhibitory phosphorylation of GSK3β and
through direct activation of the Akt pathway. The acti-
vation of Akt modulates forkhead bow class O (FOXO)
and Bcl-2 associated death protein (Bad) (a pro-apoptotic
protein of the Bcl-2 family)81,82.

Lithium and the WNT/β-catenin pathway
Therapeutic concentrations of the GSK-3β inhibitor

lithium lead to the increase in β-catenin levels83,84 and
then promotes β-catenin transcriptional activity16,85. In
the brain of a mouse, the over-expression of β-catenin
levels mimics the anti-depressant-like effects of lithium86,
while the knockout of β-catenin leads to a depression-like
phenotype87,88.

Lithium in OCD
Lithium and oxidative stress
The energy and glucose metabolisms involved during

oxidative stress are mainly regulated by the intracellular
FOXO transcription factors (FOXO1, 3a, 4)89. The interac-
tion between β-catenin and FOXO transcription factors
promotes cell quiescence and cell cycle arrest. Β-catenin
blocks its transcriptional complex with TCF/LEF through

the interaction with FOXO-induced ROS90. Β-cateni does
not translocate to the nucleus and thus accumulates in the
cytosol, leading to the inactivation of the WNT/β-catenin
pathway91,92. A previous study has found that lithium can
reduce FOXO3a transcriptional activity and can decrease
the level of active FOXO3a93. Thus, by inactivating GSK3-β,
activating the WNT/β-catenin pathway, and reducing the
FOXO, lithium could participate in the reduction of oxida-
tive stress in OCD.
Furthermore, several in vitro studies have shown that

lithium administration could inhibit hydrogen peroxide-
induced cell death as well as obstruct lipid peroxidation
and protein oxidation in cortical cells94–99. Moreover,
lithium can act as an anti-oxidant by increasing the CHS
levels in neurons of rat dopaminergic N2795,99.

Lithium and inflammation
Through the inhibition of GSK-3β and thus the upre-

gulation of the WNT/β-catenin pathway, the lithium
administration could involve a diminution of the neuro-
inflammation by acting on the NF-ϰB pathway. The
activation of the WNT pathway cascade restrains
inflammation and leads to neuroprotection via interac-
tions between microglia/macrophages and astrocytes
(Fig. 2)100,101.
Several studies have shown negative crosstalk between the

WNT/β-catenin pathway and the NF-ϰB signaling path-
way102. The NF-ϰB transcription factor family consists of
five members in the cytosol under non-activated conditions:
NF-ϰB1 (p50/p105), NF-ϰB 2 (p52/p100), RelA (p65), RelB,
and c-Rel103. Β-CATENIN can form a complex with RelA
and p50 to decrease the activity of the NF-ϰB signaling104.
Moreover, by interacting with the PI3K, β-catenin inhibits

Fig. 1 WNT pathway activation and inhibition.
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the functional activity of NF-ϰB105. This inhibitory function
of β-catenin on NF-ϰB activity has been observed in
numerous cell types, such as fibroblasts, epithelial cells,
hepatocytes, and osteoblasts102. In parallel, the over-
activation of GSK-3β leads to an inhibition of the β-catenin
and then activation of the NF-ϰB pathway106. The potential
protective action of β-catenin was due to the activation of
the PI3K/Akt pathway and thus the reduction of TLR4-
driven inflammatory response in hepatocytes107. NF-ϰB
activation leads to the inhibition of the complex β-catenin/
TCF/LEF by the upregulation of LZTS2 in cancer cells108.
DKK, a WNT inhibitor, was a target gene of the NF-ϰB
pathway leading to a negative feedback to diminish the
β-catenin signaling109.
A recent study has presented that the WNT pathway

appeared to be one of the main mechanisms of the action
of lithium in adipose cells, and this interaction is done by
the inhibition of PPARγ expression110. PPARs are ligand-
activated transcription factors that bind PPRE (PPAR-
response elements). PPARs are involved in numerous
pathophysiological processes, such as cell differentiation,
protein metabolism, lipids metabolism, carcinogen-
esis111,112, adipocyte differentiation, insulin sensitivity,
and inflammation113,114. PPARγ ligands, such as thiazo-
lidinediones (TZDs), are able to decrease inflammatory
activity115.
A negative crosstalk has been well described between

PPARγ and the WNT pathway32,73,116,117. The PI3K/Akt
pathway, which is positively induced by β-catenin118,119,
acts by phosphorylating GSK-3β to negatively regulate
PPARγ expression120. PPARγ agonists decrease β-catenin
expression by overactivating GSK-3β121. Moreover,
PPARγ agonists activate Dickkopf-1 (DKK1) activity to
decrease the canonical WNT/β-catenin pathway and

then inhibit fibroblast differentiation122. Furthermore,
PPARγ agonists activate GSK-3β to decrease β-catenin
expression121.

Lithium and the glutamatergic pathway
Lithium administration has been also associated with an

influence on the levels of proapoptotic proteins. Bax,
named Bcl-2 associated C protein, is a key modulator
promoting apoptosis by binding to and antagonizing the
Bcl-2 protein. The tumor suppressor protein, p53, targets
Bcl-2 and Bax and then promotes growth arrests and cell
death in response to cell damage (Fig. 2)123.
Several studies have demonstrated that the neuropro-

tective effects of lithium could be attributed to increased
Bcl-2 levels. Indeed, lithium therapy of cultured cerebellar
granule cells increased mRNA and protein levels of Bcl-2,
and the Bcl-2/Bax protein level ratio increased by 5-fold
after treatment duration for 5–7 days124. The increase in
Bcl-2 expression leads to neurogenesis in the hippo-
campus and entorhinal cortex in mice by the increase of
axon diameters and neurite growth on the CA3 area of the
hippocampus and increased myelination in the entorhinal
cortex125. Lithium can also act by stimulating anti-
apoptotic-increasing Bcl-2 levels and reducing Bax126.
The phosphorylation of Bcl 2 at serine 70 is needed for a
complete anti-apoptotic function127 and lithium has this
ability128. Lithium inhibits Bcl-2 dephosphorylation and
caspase-2 activation through the reduction of the protein
phosphatase-2A activity128.
Glutamate excitotoxicity has been associated with the

upregulation of Bax and p53 and the downregulation of
Bcl-2124. The apoptosis attributed to glutamate was pre-
ceded by the increase in activator protein-1 (AP-1) caused
by the activation of c-Jun N-terminal kinase (JNK) and

Fig. 2 Lithium interactions with oxidative stress, inflammation, and glutamatergic pathways.
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p38 mitogen-activated protein kinase (MAP kinase) and
phosphorylation of c-Jun and p53129.
By inhibiting GSK-3β activity, lithium acts as a powerful

regulator of EAAT3 and thus of the regulation of NMDA
receptors130. Moreover, a direct potential way could be the
inhibition of presynaptic NMDA receptors and thus the
activation of postsynaptic AMPA receptors by the release of
glutamate. This mechanism is followed by the activation of
the influx of calcium and secretion of brain-derived neuro-
trophic factor (BDNF). Lithium stimulated the release of the
excitatory neurotransmitter, glutamate, from cerebral cortex
slices131. This release was accompanied by an increase in
inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumulation. The
increase in Ins(1,4,5)P3 accumulation was caused by the
selective activation of the N-methyl-D-aspartate (NMDA)
receptor/channel by glutamate. Activation of the NMDA
receptor is known to cause increased Ins(1,4,5)P3 accumu-
lation132. Thus, BDNF stimulates the receptor tyrosine kinase
B (TrkB), leading to neuronal survival and differentiation133.
Activated BDNF-TrkB signaling leads to stimulation of

the Akt/mTOR pathway, causing activation of the WNT/
β-catenin pathway and enhancing synaptic proteins134.
The few therapeutic levels of lithium activate the BDNF-
TrkB signaling and then the Akt/mTOR signaling to
protect neurons from glutamate excitotoxicity135. Lithium
inhibits excessive glutamate, NMDA receptor-mediated
calcium influx in neurons and reduces NR2B subunit
tyrosine phosphorylation by the Src/Fyn kinase136.
PPARγ antagonists can block the increase of PPARγ

DNA binding activity and antioxidant enzymatic activities
(SOD), inhibiting the protection of PPARγ activation in
OGD-exposed neurons137. Other mechanisms by which
these PPARγ agonists prevent oxidative stress include a
decrease in iNOS activity, NFκB blockade, inhibition of
TNF-α release, or activation of nuclear factor (erythroid-
derived 2)-like 2 (Nrf2)138. By the negative crosstalk
between WNT and PPARγ, lithium administration, by
inhibiting the GSK-3β could act as a PPARγ antagonist
and lead to an increase in the WNT pathway, resulting in
diminution of oxidative stress.

Conclusion
Currently, few studies have studied lithium as a pos-

sible alternative therapeutic way to treat OCD patients.
However, in low doses, lithium may appear to be inter-
esting against OCD because of its potential inhibitory
effect on oxidative stress, inflammation, and the gluta-
matergic pathway.
No study has still reported the expression of the WNT/β

pathway in OCD. Nevertheless, the overactivity of the GSK-
3β, the main inhibitor of the WNT pathway, in OCD
patients is consistent with a downregulation of the WNT
pathway in this disease. By stimulating the WNT/β pathway,
through the inhibition of GSK-3β, lithium could be an

innovative therapeutic way in OCD. Future prospective
studies could focus on lithium and its different and multiple
interactions in OCD.
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